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Wojciech H. Zurek

This paper has a somewhat unusual origin and, as a consequence, an unusual
structure. It is built on the principle embraced by families who outgrow their
dwellings and decide to add a few rooms to their existing structures instead of start-
ing from scratch. These additions usually “show,” but the whole can still be quite
pleasing to the eye, combining the old and the new in a functional way. 

What follows is such a “remodeling” of the paper I wrote a dozen years ago for
Physics Today (1991). The old text (with some modifications) is interwoven with the
new text, but the additions are set off in boxes throughout this article and serve as a
commentary on new developments as they relate to the original. The references
appear together at the end. 

In 1991, the study of decoherence was still a rather new subject, but already at
that time, I had developed a feeling that most implications about the system’s
“immersion” in the environment had been discovered in the preceding 10 years, so a
review was in order. While writing it, I had, however, come to suspect that the small
gaps in the landscape of the border territory between the quantum and the classical
were actually not that small after all and that they presented excellent opportunities
for further advances. 

Indeed, I am surprised and gratified by how much the field has evolved over the
last decade. The role of decoherence was recognized by a wide spectrum of practic-
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ing physicists as well as, beyond physics proper, by material scientists and
philosophers. The study of the predictability sieve, investigations of the interface
between chaotic dynamics and decoherence, and most recently, the tantalizing
glimpses of the information-theoretic nature of the quantum have elucidated our
understanding of the Universe. During this period, Los Alamos has grown into a
leading center for the study of decoherence and related issues through the enthusi-
astic participation of a superb group of staff members, postdoctoral fellows, long-
term visitors, and students, many of whom have become long-term collaborators.
This group includes, in chronological order, Andy Albrecht, Juan Pablo Paz,
Bill Wootters, Raymond Laflamme, Salman Habib, Jim Anglin, Chris Jarzynski,
Kosuke Shizume, Ben Schumacher, Manny Knill, Jacek Dziarmaga, Diego Dalvit,
Zbig Karkuszewski, Harold Ollivier, Roberto Onofrio, Robin
Blume-Kohut, David Poulin, Lorenza Viola, and David Wallace.

Finally, I have some advice for the reader. I believe this paper
should be read twice: first, just the old text alone; then—and
only then—on the second reading, the whole thing. I would also
recommend to the curious reader two other overviews: the draft
of my Reviews of Modern Physics paper (Zurek 2001a) and Les
Houches Lectures coauthored with Paz (Paz and Zurek 2001).



Introduction

Quantum mechanics works exceedingly well in all practical applications. No example
of conflict between its predictions and experiment is known. Without quantum physics,
we could not explain the behavior of the solids, the structure and function of DNA,
the color of the stars, the action of lasers, or the properties of superfluids. Yet nearly 
a century after its inception, the debate about the relation of quantum physics to the
familiar physical world continues. Why is a theory that seems to account with precision
for everything we can measure still deemed lacking? 

The only “failure” of quantum theory is its inability to provide a natural framework
for our prejudices about the workings of the Universe. States of quantum systems evolve
according to the deterministic, linear Schrödinger equation

(1)

That is, just as in classical mechanics, given the initial state of the system and its
Hamiltonian H, one can, at least in principle, compute the state at an arbitrary time. 
This deterministic evolution of |ψ〉 has been verified in carefully controlled experiments.
Moreover, there is no indication of a border between quantum and classical at which
Equation (1) would fail (see cartoon on the opener to this article). 

There is, however, a very poorly controlled experiment with results so tangible and
immediate that it has enormous power to convince: Our perceptions are often difficult to
reconcile with the predictions of Equation (1). Why? Given almost any initial condition,
the Universe described by |ψ〉 evolves into a state containing many alternatives that are
never seen to coexist in our world. Moreover, while the ultimate evidence for the choice
of one alternative resides in our elusive “consciousness,” there is every indication that 
the choice occurs much before consciousness ever gets involved and that, once made, the
choice is irrevocable. Thus, at the root of our unease with quantum theory is the clash
between the principle of superposition—the basic tenet of the theory reflected in the 
linearity of Equation (1)—and everyday classical reality in which this principle appears
to be violated. 

The problem of measurement has a long and fascinating history. The first widely
accepted explanation of how a single outcome emerges from the multitude of potentiali-
ties was the Copenhagen Interpretation proposed by Niels Bohr (1928), who insisted
that a classical apparatus is necessary to carry out measurements. Thus, quantum theory
was not to be universal. The key feature of the Copenhagen Interpretation is the dividing
line between quantum and classical. Bohr emphasized that the border must be mobile so
that even the “ultimate apparatus”—the human nervous system—could in principle be
measured and analyzed as a quantum object, provided that a suitable classical device
could be found to carry out the task. 

In the absence of a crisp criterion to distinguish between quantum and classical,
an identification of the classical with the macroscopic has often been tentatively accepted.
The inadequacy of this approach has become apparent as a result of relatively recent
developments: A cryogenic version of the Weber bar—a gravity-wave detector— must 
be treated as a quantum harmonic oscillator even though it may weigh a ton (Braginsky
et al. 1980, Caves et al. 1980). Nonclassical squeezed states can describe oscillations of
suitably prepared electromagnetic fields with macroscopic numbers of photons (Teich
and Saleh 1990). Finally, quantum states associated with the currents of superconducting
Josephson junctions involve macroscopic numbers of electrons, but still they can tunnel
between the minima of the effective potential corresponding to the opposite sense of 
rotation (Leggett et al. 1987, Caldeira and Leggett 1983a, Tesche 1986).
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If macroscopic systems cannot be always safely placed on the classical side of the
boundary, then might there be no boundary at all? The Many Worlds Interpretation (or
more accurately, the Many Universes Interpretation), developed by Hugh Everett III with
encouragement from John Archibald Wheeler in the 1950s, claims to do away with the
boundary (Everett 1957, Wheeler 1957). In this interpretation, the entire universe is
described by quantum theory. Superpositions evolve forever according to the Schrödinger
equation. Each time a suitable interaction takes place between any two quantum systems,
the wave function of the universe splits, developing ever more “branches.”

Initially, Everett’s work went almost unnoticed. It was taken out of mothballs over a
decade later by Bryce DeWitt (1970) and DeWitt and Neill Graham (1973), who man-
aged to upgrade its status from “virtually unknown” to “very controversial.” The Many
Worlds Interpretation is a natural choice for quantum cosmology, which describes the
whole Universe by means of a state vector. There is nothing more macroscopic than the
Universe. It can have no a priori classical subsystems. There can be no observer “on the
outside.” In this universal setting, classicality must be an emergent property of the
selected observables or systems. 

At first glance, the Many Worlds and Copenhagen Interpretations have little in 
common. The Copenhagen Interpretation demands an a priori “classical domain” with a
border that enforces a classical “embargo” by letting through just one potential outcome.
The Many Worlds Interpretation aims to abolish the need for the border altogether.
Every potential outcome is accommodated by the ever-proliferating branches of the
wave function of the Universe. The similarity between the difficulties faced by these two
viewpoints becomes apparent, nevertheless, when we ask the obvious question, “Why do
I, the observer, perceive only one of the outcomes?” Quantum theory, with its freedom
to rotate bases in Hilbert space, does not even clearly define which states of the
Universe correspond to the “branches.” Yet, our perception of a reality with alterna-
tives—not a coherent superposition of alternatives—demands an explanation of when,
where, and how it is decided what the observer actually records. Considered in this 
context, the Many Worlds Interpretation in its original version does not really abolish
the border but pushes it all the way to the boundary between the physical Universe and 
consciousness. Needless to say, this is a very uncomfortable place to do physics. 

In spite of the profound nature of the difficulties, recent years have seen a growing con-
sensus that progress is being made in dealing with the measurement problem, which is the
usual euphemism for the collection of interpretational conundrums described above. The
key (and uncontroversial) fact has been known almost since the inception of quantum the-
ory, but its significance for the transition from quantum to classical is being recognized only
now: Macroscopic systems are never isolated from their environments. Therefore—as H.
Dieter Zeh emphasized (1970)—they should not be expected to follow Schrödinger’s equa-
tion, which is applicable only to a closed system. As a result, systems usually regarded as
classical suffer (or benefit) from the natural loss of quantum coherence, which “leaks out”
into the environment (Zurek 1981, 1982). The resulting “decoherence” cannot be ignored
when one addresses the problem of the reduction of the quantum mechanical wave packet:
Decoherence imposes, in effect, the required “embargo” on the potential outcomes by
allowing the observer to maintain only the records of alternatives sanctioned by decoher-
ence and to be aware of only one of the branches—one of the “decoherent histories” in the
nomenclature of Murray Gell-Mann and James Hartle (1990) and Hartle (1991). 

The aim of this paper is to explain the physics and thinking behind this approach.
The reader should be warned that this writer is not a disinterested witness to this 
development (Wigner 1983, Joos and Zeh 1985, Haake and Walls 1986, Milburn and
Holmes 1986, Albrecht 1991, Hu et al. 1992), but rather, one of the proponents. I shall,
nevertheless, attempt to paint a fairly honest picture and point out the difficulties 
as well as the accomplishments.
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Correlations and Measurements

A convenient starting point for the discussion of the measurement problem and, more
generally, of the emergence of classical behavior from quantum dynamics is the analysis
of quantum measurements due to John von Neumann (1932). In contrast to Bohr, who
assumed at the outset that the apparatus must be classical (thereby forfeiting the claim
of quantum theory to universal validity), von Neumann analyzed the case of a quantum
apparatus. I shall reproduce his analysis for the simplest case: a measurement on a two-
state system S (which can be thought of as an atom with spin 1/2) in which a quantum
two-state (one bit) detector records the result.

The Hilbert space H
S

of the system is spanned by the orthonormal states |↑〉 and |↓〉,
while the states |d↑〉 and |d↓〉 span the H

D
of the detector. A two-dimensional H

D
is the

absolute minimum needed to record the possible outcomes. One can devise a quantum
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Much of what was written in the introduction
remains valid today. One important development is
the increase in experimental evidence for the validity
of the quantum principle of superposition in various
contexts including spectacular double-slit experi-
ments that demonstrate interference of fullerenes
(Arndt et al. 1999), the study of superpositions in
Josephson junctions (Mooij et al.1999, Friedman et
al. 2000), and the implementation of Schrödinger
“kittens” in atom interferometry (Chapman et al.
1995, Pfau et al. 1994), ion traps (Monroe et al.
1996) and microwave cavities (Brune et al. 1996).
In addition to confirming the superposition principle

and other exotic aspects of quantum theory (such as
entanglement) in novel settings, these experiments
allow—as we shall see later—for a controlled 
investigation of decoherence. 

The other important change that influenced the per-
ception of the quantum-to-classical “border territory”
is the explosion of interest in quantum information
and computation. Although quantum computers were
already being discussed in the 1980s, the nature of the
interest has changed since Peter Shor invented his 
factoring algorithm. Impressive theoretical advances,
including the discovery of quantum error correction
and resilient quantum computation, quickly followed,
accompanied by increasingly bold experimental for-
ays. The superposition principle, once the cause of
trouble for the interpretation of quantum theory, has
become the central article of faith in the emerging 

science of quantum information processing. This last
development is discussed elsewhere in this issue, so 
I shall not dwell on it here. 

The application of quantum physics to information
processing has also transformed the nature of interest
in the process of decoherence: At the time of my orig-
inal review (1991), decoherence was a solution to the
interpretation problem—a mechanism to impose an
effective classicality on de facto quantum systems. In
quantum information processing, decoherence plays
two roles. Above all, it is a threat to the quantumness
of quantum information. It invalidates the quantum
superposition principle and thus turns quantum com-
puters into (at best) classical computers, negating the
potential power offered by the quantumness of the
algorithms. But decoherence is also a necessary
(although often taken for granted) ingredient in quan-
tum information processing, which must, after all, end
in a “measurement.”

The role of a measurement is to convert quantum
states and quantum correlations (with their 
characteristic indefiniteness and malleability) into
classical, definite outcomes. Decoherence leads to 
the environment-induced superselection (einselection)
that justifies the existence of the preferred pointer
states. It enables one to draw an effective border
between the quantum and the classical in straightfor-
ward terms, which do not appeal to the “collapse of
the wave packet” or any other such deus ex machina.

Decoherence in Quantum Information Processing



detector (see Figure 1) that “clicks” only when the spin is in the state |↑〉, that is,

|↑〉 |d↓〉 → |↑〉 |d↑〉 , (2)

and remains unperturbed otherwise.
I shall assume that, before the interaction, the system was in a pure state |ψ

S
〉 given by

|ψ
S

〉 = α|↑〉 + β|↓〉  , (3)

with the complex coefficients satisfying |α|2 + |β|2 = 1. The composite system starts as

|Φi〉 = |ψ
S

〉|d↓〉  . (4)

Interaction results in the evolution of |Φi〉 into a correlated state |Φc〉:

|Φi〉 = (α|↑〉 + β|↓〉)|d↓〉 ⇒ α|↑〉|d↑〉 + β|↓〉|d↓〉 = |Φc〉  . (5)

This essential and uncontroversial first stage of the measurement process can be accom-
plished by means of a Schrödinger equation with an appropriate interaction. It might be
tempting to halt the discussion of measurements with Equation (5). After all, the corre-
lated state vector |Φc〉 implies that, if the detector is seen in the state |d↑〉, the system is
guaranteed to be found in the state |↑〉. Why ask for anything more? 

The reason for dissatisfaction with |Φc〉 as a description of a completed measurement
is simple and fundamental: In the real world, even when we do not know the outcome of
a measurement, we do know the possible alternatives, and we can safely act as if only
one of those alternatives has occurred. As we shall see in the next section, such an
assumption is not only unsafe but also simply wrong for a system described by |Φc〉. 

How then can an observer (who has not yet consulted the detector) express his 
ignorance about the outcome without giving up his certainty about the “menu” of the
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Figure 1. A Reversible
Stern-Gerlach Apparatus
The “gedanken” reversible
Stern-Gerlach apparatus in (a)
splits a beam of atoms into two
branches that are correlated
with the component of the spin
of the atoms (b) and then
recombines the branches
before the atoms leave the
device. Eugene Wigner (1963)
used this gedanken experiment
to show that a correlation
between the spin and the loca-
tion of an atom can be
reversibly undone. The intro-
duction of a one-bit (two-state)
quantum detector that changes
its state when the atom passes
nearby prevents the reversal:
The detector inherits the corre-
lation between the spin and the
trajectory, so the Stern-Gerlach
apparatus can no longer undo
the correlation. (This illustration 

was adapted with permission from 

Zurek 1981.)



possibilities? Quantum theory provides the right formal tool for the occasion: A density
matrix can be used to describe the probability distribution over the alternative outcomes. 

Von Neumann was well aware of these difficulties. Indeed, he postulated (1932) that,
in addition to the unitary evolution given by Equation (1), there should be an ad hoc
“process 1”—a nonunitary reduction of the state vector—that would take the pure, cor-
related state |Φc〉 into an appropriate mixture: This process makes the outcomes inde-
pendent of one another by taking the pure-state density matrix:

ρc = |Φc〉〈Φc| = |α|2|↑〉〈↑||d↑〉〈d↑| + αβ*|↑〉〈↓||d↑〉〈d↓|

+ α∗β|↓〉〈↑|d↓〉〈d↑| + |β|2|↓〉〈↓||d↓〉〈d↓| , (6)

and canceling the off-diagonal terms that express purely quantum correlations (entangle-
ment) so that the reduced density matrix with only classical correlations emerges:

ρr = |α|2|↑〉〈↑||d↑〉〈d↑| + |β|2|↓〉〈↓||d↓〉〈d↓|  . (7)

Why is the reduced ρr easier to interpret as a description of a completed measurement
than ρc? After all, both ρr and ρc contain identical diagonal elements. Therefore, both
outcomes are still potentially present. So what—if anything—was gained at the substan-
tial price of introducing a nonunitary process 1?

The Question of Preferred Basis: What Was Measured?

The key advantage of ρr over ρc is that its coefficients may be interpreted as classical
probabilities. The density matrix ρr can be used to describe the alternative states of a
composite spin-detector system that has classical correlations. Von Neumann’s 
process 1 serves a similar purpose to Bohr’s “border” even though process 1 leaves all
the alternatives in place. When the off-diagonal terms are absent, one can nevertheless
safely maintain that the apparatus, as well as the system, is each separately in a definite
but unknown state, and that the correlation between them still exists in the preferred
basis defined by the states appearing on the diagonal. By the same token, the identities
of two halves of a split coin placed in two sealed envelopes may be unknown but are
classically correlated. Holding one unopened envelope, we can be sure that the half it
contains is either “heads” or “tails” (and not some superposition of the two) and that the
second envelope contains the matching alternative. 

By contrast, it is impossible to interpret ρc as representing such “classical ignorance.”
In particular, even the set of the alternative outcomes is not decided by ρc! This circum-
stance can be illustrated in a dramatic fashion by choosing α = –β = 1/√2 so that the
density matrix ρc is a projection operator constructed from the correlated state

|Φc〉 = (|↑〉|d↑〉 – |↓〉|d↓〉)/√2  . (8)

This state is invariant under the rotations of the basis. For instance, instead of the eigen-
states of |↑〉 and |↓〉 of σ̂z one can rewrite |Φc〉 in terms of the eigenstates of σ̂x:

|�〉 = (|↑〉 + |↓〉)/√2  , (9a)

|⊗〉 = (|↑〉 – |↓〉)/√2  . (9b)
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This representation immediately yields

|Φc〉 = – (|�〉|d�〉 – |⊗〉|d⊗〉)/√2  ,                (10)

where

|d�〉 = (|d↓〉 – |d↑〉)/√2  and |d⊗〉 = (|d↑〉 + |d↓〉)/√2 (11)

are, as a consequence of the superposition principle, perfectly “legal” states in the
Hilbert space of the quantum detector. Therefore, the density matrix

ρc = |Φc〉〈Φc|

could have many (in fact, infinitely many) different states of the subsystems on the
diagonal. 

This freedom to choose a basis  should not come as a surprise. Except for the
notation, the state vector |Φc〉 is the same as the wave function of a pair of maxi-
mally correlated (or entangled) spin-1/2 systems in David Bohm’s version (1951)
of the Einstein-Podolsky-Rosen (EPR) paradox (Einstein et al. 1935). And the
experiments that show that such nonseparable quantum correlations violate Bell’s
inequalities (Bell 1964) are demonstrating the following key point: The states of
the two spins in a system described by |Φc〉 are not just unknown, but rather they
cannot exist before the “real” measurement (Aspect et al. 1981, 1982). We con-
clude that when a detector is quantum, a superposition of records exists and is a
record of a superposition of outcomes—a very nonclassical state of affairs.

Missing Information and Decoherence

Unitary evolution condemns every closed quantum system to “purity.” Yet, if the
outcomes of a measurement are to become independent events, with consequences
that can be explored separately, a way must be found to dispose of the excess infor-
mation. In the previous sections, quantum correlation was analyzed from the point
of view of its role in acquiring information. Here, I shall discuss the flip side of the
story: Quantum correlations can also disperse information throughout the degrees
of freedom that are, in effect, inaccessible to the observer. Interaction with the
degrees of freedom external to the system—which we shall summarily refer to as
the environment—offers such a possibility. 

Reduction of the state vector, ρc ⇒ ρr, decreases the information available to
the observer about the composite system SD. The information loss is needed if
the outcomes are to become classical and thereby available as initial conditions to
predict the future. The effect of this loss is to increase the entropy H = –Trρ lnρ
by an amount

∆H = H(ρr) – H(ρc) = – (|α|2 ln|α|2 + |β|2 ln|β|2)  . (12)

Entropy must increase because the initial state described by ρc was pure,
H(ρc) = 0, and the reduced state is mixed. Information gain—the objective of the
measurement—is accomplished only when the observer interacts and becomes
correlated with the detector in the already precollapsed state ρr. 
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To illustrate the process of the environment-induced decoherence, consider a 
system S, a detector D, and an environment E. The environment is also a quantum 
system. Following the first step of the measurement process—establishment of a 
correlation as shown in Equation (5)—the environment similarly interacts and 
becomes correlated with the apparatus:

|Φc〉| E0〉 = (α|↑〉|d↑〉 + β|↓〉|d↓〉)| E 0〉 ⇒ α|↑〉|d↑〉| E ↑〉 + β|↓〉|d↓〉| E ↓〉 = |Ψ〉 .        (13)

The final state of the combined SDE “von Neumann chain” of correlated systems
extends the correlation beyond the SD pair. When the states of the environment |Ei〉
corresponding to the states |d↑〉 and |d↓〉 of the detector are orthogonal, 〈Ei|Ei′〉 = δii′,
the density matrix for the detector-system combination is obtained by ignoring (tracing
over) the information in the uncontrolled (and unknown) degrees of freedom

ρ
DS

= Tr
E

|Ψ〉〈Ψ| = Σ i〈Ei|Ψ〉〈Ψ|Ei′〉 = |α|2|↑〉〈↑||d↑〉〈d↑| + |β|2|↓〉〈↓||d↓〉〈d↓| = ρr .      (14)

The resulting ρr is precisely the reduced density matrix that von Neumann called for.
Now, in contrast to the situation described by Equations (9)–(11), a superposition of the
records of the detector states is no longer a record of a superposition of the state of the
system. A preferred basis of the detector, sometimes called the “pointer basis” for obvi-
ous reasons, has emerged. Moreover, we have obtained it—or so it appears—without
having to appeal to von Neumann’s nonunitary process 1 or anything else beyond the
ordinary, unitary Schrödinger evolution. The preferred basis of the detector—or for that
matter, of any open quantum system—is selected by the dynamics.

Not all aspects of this process are completely clear. It is, however, certain that the
detector–environment interaction Hamiltonian plays a decisive role. In particular, when
the interaction with the environment dominates, eigenspaces of any observable Λ that
commutes with the interaction Hamiltonian,

[Λ, Hint] = 0  , (15)

invariably end up on the diagonal of the reduced density matrix (Zurek 1981, 1982).
This commutation relation has a simple physical implication: It guarantees that the
pointer observable Λ will be a constant of motion, a conserved quantity under the evolu-
tion generated by the interaction Hamiltonian. Thus, when a system is in an eigenstate
of Λ, interaction with the environment will leave it unperturbed. 

In the real world, the spreading of quantum correlations is practically inevitable. For
example, when in the course of measuring the state of a spin-1/2 atom (see Figure 1b), a
photon had scattered from the atom while it was traveling along one of its two alterna-
tive routes, this interaction would have resulted in a correlation with the environment
and would have necessarily led to a loss of quantum coherence. The density matrix of
the SD pair would have lost its off-diagonal terms. Moreover, given that it is impossible
to catch up with the photon, such loss of coherence would have been irreversible. As we
shall see later, irreversibility could also arise from more familiar, statistical causes:
Environments are notorious for having large numbers of interacting degrees of freedom,
making extraction of lost information as difficult as reversing trajectories in the
Boltzmann gas. 
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The contrast between the density matrices in
Equations (6) and (7) is stark and obvious. In particu-
lar, the entanglement between the system and the
detector in ρc is obviously quantum—classical sys-
tems cannot be entangled. The argument against the
“ignorance” interpretation of ρc still stands. Yet we
would like to have a quantitative measure of how
much is classical (or how much is quantum) about the
correlations of a state represented by a general density
matrix. Such a measure of the quantumness of corre-
lation was devised recently (Ollivier and Zurek 2002).
It is known as quantum discord. Of the several closely
related definitions of discord, we shall select one that
is easiest to explain. It is based on mutual informa-
tion—an information-theoretic measure of how much
easier it is to describe the state of a pair of objects 
(S, D) jointly rather than separately. One formula for
mutual information I(S:D) is simply 

I(S:D) = H(S) + H(D) – H(S, D),

where H(S) and H(D) are the entropies of S and D,
respectively, and H(S, D) is the joint entropy of the
two. When S and D are not correlated (statistically
independent),

H(S, D) = H(S) + H(D),

and I(S:D) = 0. By contrast, when there is a perfect
classical correlation between them (for example, two
copies of the same book), H(S, D) = H(S) = H(D)
= I(S:D). Perfect classical correlation implies that,
when we find out all about one of them, we also know
everything about the other, and the conditional
entropy H(S|D) (a measure of the uncertainty about
S after the state of D is found out) disappears.
Indeed, classically, the joint entropy H(S, D) can
always be decomposed into, say, H(D), which meas-
ures the information missing about D, and the condi-
tional entropy H(S|D). Information is still missing
about S even after the state of D has been deter-
mined: H(S, D) = H(D) + H(S|D). This expression
for the joint entropy suggests an obvious rewrite of
the preceding definition of mutual information into a
classically identical form, namely,

J(S:D) = H(S) + H(D) – (H(D) + H(S|D)). 

Here, we have abstained from the obvious (and per-
fectly justified from a classical viewpoint) cancella-
tion in order to emphasize the central feature of quan-

tumness: In quantum physics, the state collapses into
one of the eigenstates of the measured observable.
Hence, a state of the object is redefined by a measure-
ment. Thus, the joint entropy can be defined in terms
of the conditional entropy only after the measurement
used to access, say, D, has been specified. In that
case,

H |dk〉(S, D) = (H(D) + H(S|D))|dk〉 . 

This type of joint entropy expresses the ignorance
about the pair (S, D) after the observable with the
eigenstates {|dk〉} has been measured on D. Of course,
H |dk〉(S, D) is not the only way to define the entropy
of the pair. One can also compute a basis-independent
joint entropy H(S, D), the von Neumann entropy of
the pair. Since these two definitions of joint entropy
do not coincide in the quantum case, we can define a
basis-dependent quantum discord 

δ |dk〉(S|D) = I – J = (H(D) + H(S|D))|dk〉 – H(S,D)

as the measure of the extent by which the underlying
density matrix describing S and D is perturbed by a
measurement of the observable with the eigenstates
{|dk〉}. States of classical objects—or classical corre-
lations—are “objective:” They exist independent of
measurements. Hence, when there is a basis {|d̂k〉}
such that the minimum discord evaluated for this basis
disappears,

δ̂ (S|D) = min{|dk〉}(H(S,D) – (H(D) +H(S|D))|dk〉) = 0,

the correlation can be regarded as effectively classical
(or more precisely, as “classically accessible through
D”). One can then show that there is a set of probabil-
ities associated with the basis {|dk〉} that can be treat-
ed as classical. It is straightforward to see that, when
S and D are entangled (for example, ρc = |φc 〉〈φc|),
then δ̂ > 0 in all bases. By contrast, if we consider ρr,
discord disappears in the basis {|d↑〉, |d↓〉} so that the
underlying correlation is effectively classical. 

It is important to emphasize that quantum discord is
not just another measure of entanglement but a gen-
uine measure of the quantumness of correlations. In
situations involving measurements and decoherence,
quantumness disappears for the preferred set of states
that are effectively classical and thus serves as an
indicator of the pointer basis, which as we shall see,
emerges as a result of decoherence and einselection. 

Quantum Discord—A Measure of Quantumness



Decoherence: How Long Does It Take?

A tractable model of the environment is afforded by a collection of harmonic oscilla-
tors (Feynman and Vernon 1963, Dekker 1981, Caldeira and Leggett 1983a, 1983b,
1985, Joos and Zeh 1985, Hu et al. 1992) or, equivalently, by a quantum field (Unruh
and Zurek 1989). If a particle is present, excitations of the field will scatter off the parti-
cle. The resulting “ripples” will constitute a record of its position, shape, orientation,
and so on, and most important, its instantaneous location and hence its trajectory. 

A boat traveling on a quiet lake or a stone that fell into water will leave such an
imprint on the water surface. Our eyesight relies on the perturbation left by the objects
on the preexisting state of the electromagnetic field. Hence, it is hardly surprising that
an imprint is left whenever two quantum systems interact, even when “nobody is 
looking,” and even when the lake is stormy and full of preexisting waves, and the field
is full of excitations—that is, when the environment starts in equilibrium at some finite
temperature. “Messy” initial states of the environment make it difficult to decipher the
record, but do not preclude its existence.

A specific example of decoherence—a particle at position x interacting with a scalar
field φ (which can be regarded as a collection of harmonic oscillators) through the
Hamiltonian

Hint = � x dφ/dt  , (16)

where � is the strength of the coupling, has been extensively studied by many, including
the investigators just referenced. The conclusion is easily formulated in the so-called
“high-temperature limit,” in which only thermal-excitation effects of the field φ are
taken into account and the effect of zero-point vacuum fluctuations is neglected. 

In this case, the density matrix ρ(x, x′) of the particle in the position representation
evolves according to the master equation

(17)

where H is the particle’s Hamiltonian (although with the potential V(x) adjusted because
of Hint), γ is the relaxation rate, kB is the Boltzmann constant, and T is the temperature
of the field. Equation (17) is obtained by first solving exactly the Schrödinger equation
for a particle plus the field and then tracing over the degrees of freedom of the field.

I will not analyze Equation (17) in detail but just point out that it naturally separates
into three distinct terms, each of them responsible for a different aspect of the effectively
classical behavior. The first term—the von Neumann equation (which can be derived
from the Schrödinger equation)—generates reversible classical evolution of the expecta-
tion value of any observable that has a classical counterpart regardless of the form of ρ
(Ehrenfest’s theorem). The second term causes dissipation. The relaxation rate γ = η/2m
is proportional to the viscosity η = �2/2 because of the interaction with the scalar field.
That interaction causes a decrease in the average momentum and loss of energy. The last
term also has a classical counterpart: It is responsible for fluctuations or random “kicks”
that lead to Brownian motion. We shall see this in more detail in the next section. 
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∆x

χ+
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Figure 2. A “Schrödinger
Cat” State or a Coherent
Superposition
This cat state ϕ (x), the coher-
ent superposition of two
Gaussian wave packets of
Equation (18), could describe 
a particle in a superposition 
of locations inside a Stern-
Gerlach apparatus (see 
Figure 1) or the state that 
develops in the course of 
a double-slit experiment.
The phase between the two 
components has been chosen
to be zero.
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For our purposes, the effect of the last term on quantum superpositions is of great-
est interest. I shall show that it destroys quantum coherence, eliminating off-diagonal
terms responsible for quantum correlations between spatially separated pieces of the
wave packet. It is therefore responsible for the classical structure of the phase space,
as it converts superpositions into mixtures of localized wave packets which, in the
classical limit, turn into the familiar points in phase space. This effect is best illus-
trated by an example. Consider the “cat” state shown in Figure 2, where the wave
function of a particle is given by a coherent superposition of two Gaussians:
ϕ (x) = (χ+(x) + χ– (x))/21/2 and the Gaussians are

(18)

For the case of wide separation (∆x > > δ), the corresponding density matrix 
ρ(x, x′) = ϕ (x) ϕ*(x′) has four peaks: Two on the diagonal defined by x = x′, and two 
off the diagonal for which x and x′ are very different (see Figure 3). Quantum coherence
is due to the off-diagonal peaks. As those peaks disappear, position emerges as an
approximate preferred basis.

The last term of Equation (17), which is proportional to (x – x′)2, has little effect on
the diagonal peaks. By contrast, it has a large effect on the off-diagonal peaks for which
(x – x′)2 is approximately the square of the separation (∆x)2. In particular, it causes the 

off-diagonal peaks to decay at the rate 

It follows that quantum coherence will disappear on a decoherence time scale (Zurek 1984):

(19)

where λdB = h/(2mkBT )–1/2 is the thermal de Broglie wavelength. For macroscopic
objects, the decoherence time τD is typically much less than the relaxation time τR = γ –1.
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Figure 3. Evolution of the
Density Matrix for the
Schrödinger Cat State in
Figure 2 
(a)This plot shows the density
matrix for the cat state in
Figure 2 in the position repre-
sentation ρ(x, x′) = ϕ(x)ϕ*(x).
The peaks near the diagonal
(green) correspond to the two
possible locations of the parti-
cle. The peaks away from the
diagonal (red) are due to quan-
tum coherence. Their existence
and size demonstrate that the
particle is not in either of the
two approximate locations but
in a coherent superposition of
them. (b) Environment-induced
decoherence causes decay of
the off-diagonal terms of 
ρ(x, x′). Here, the density matrix
in (a) has partially decohered.
Further decoherence would
result in a density matrix with
diagonal peaks only. It can then
be regarded as a classical
probability distribution with an
equal probability of finding the
particle in either of the loca-
tions corresponding to the
Gaussian wave packets.

(a) (b)

x x
x ′ x ′

d

dt
mk T xB Dρ γ ρ τ ρ+− +− − +( ) ( ) =~ 2 2 2 1h ∆ .



For a system at temperature T = 300 kelvins with mass m = 1 gram and separation 
∆x = 1 centimeter, the ratio of the two time scales is τD/τR ~ 10–40! Thus, even if the
relaxation rate were of the order of the age of the Universe, ~1017 seconds, quantum
coherence would be destroyed in τD ~ 10–23 second.

For microscopic systems and, occasionally, even for very macroscopic ones, the deco-
herence times are relatively long. For an electron (me = 10–27 grams), τD can be much
larger than the other relevant time scales on atomic and larger energy and distance scales.
For a massive Weber bar, tiny ∆x (~10–17 centimeter) and cryogenic temperatures sup-
press decoherence. Nevertheless, the macroscopic nature of the object is certainly crucial
in facilitating the transition from quantum to classical.
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A great deal of work on master equations and their derivations in different 
situations has been conducted since 1991, but in effect, most of the results
described above stand. A summary can be found in Paz and Zurek (2001) and
a discussion of the caveats to the simple conclusions regarding decoherence
rates appears in James Anglin et al. (1997). 

Perhaps the most important development in the study of decoherence is on the
experimental front. In the past decade, several experiments probing decoher-
ence in various systems have been carried out. In particular, Michel Brune,
Serge Haroche, Jean-Michel Raimond, and their colleagues at École Normale
Supérieure in Paris (Brune et al. 1996, Haroche 1998) have performed a series
of microwave cavity experiments in which they manipulate electromagnetic
fields into a Schrödinger-cat-like superposition using rubidium atoms. They
probe the ensuing loss of quantum coherence. These experiments have con-
firmed the basic tenets of decoherence theory. Since then, the French scientists
have applied the same techniques to implement various quantum information-
processing ventures. They are in the process of upgrading their equipment 
in order to produce “bigger and better” Schrödinger cats and to study their
decoherence.

A little later, Wineland, Monroe, and coworkers (Turchette et al. 2000) used
ion traps (set up to implement a fragment of one of the quantum computer
designs) to study the decoherence of ions due to radiation. Again, theory was
confirmed, further advancing the status of decoherence as both a key ingredi-
ent of the explanation of the emergent classicality and a threat to quantum
computation. In addition to these developments, which test various aspects of
decoherence induced by a real or simulated “large environment,” Pritchard 
and his coworkers at the Massachusetts Institute of Technology have carried
out a beautiful sequence of experiments by using atomic interferometry in
order to investigate the role of information transfer between atoms and 
photons (see Kokorowski et al. 2001 and other references therein). Finally,
“analogue experiments” simulating the behavior of the Schrödinger equation in
optics (Cheng and Raymer 1999) have explored some of the otherwise diffi-
cult-to-access corners of the parameter space. 

In addition to these essentially mesoscopic Schrödinger-cat decoherence 
experiments, designs of much more substantial “cats” (for example,
mirrors in superpositions of quantum states) are being investigated in 
several laboratories.

Experiments on Decoherence



Classical Limit of Quantum Dynamics

The Schrödinger equation was deduced from classical mechanics in the Hamilton-
Jacobi form. Thus, it is no surprise that it yields classical equations of motion when h
can be regarded as small. This fact, along with Ehrenfest’s theorem, Bohr’s correspon-
dence principle, and the kinship of quantum commutators with the classical Poisson
brackets, is part of the standard lore found in textbooks. However, establishing the quan-
tum–classical correspondence involves the states as well as the equations of motion.
Quantum mechanics is formulated in Hilbert space, which can accommodate localized
wave packets with sensible classical limits as well as the most bizarre superpositions.
By contrast, classical dynamics happens in phase space.

To facilitate the study of the transition from quantum to classical behavior, it is con-
venient to employ the Wigner transform of a wave function ψ(x):

(20)

which expresses quantum states as functions of position and momentum.
The Wigner distribution W(x,p) is real, but it can be negative. Hence, it cannot be 

regarded as a probability distribution. Nevertheless, when integrated over one of the two vari-
ables, it yields the probability distribution for the other (for example, ∫ W(x,p)dp = |ψ(x)|2).
For a minimum uncertainty wave packet, ψ(x) = π–1/4δ–1/2exp{– (x – x0)2/2δ2 + ip0x/h},
the Wigner distribution is a Gaussian in both x and p:

(21)

It describes a system that is localized in both x and p. Nothing else that Hilbert space
has to offer is closer to approximating a point in classical phase space. The Wigner dis-
tribution is easily generalized to the case of a general density matrix ρ(x,x′):

(22)

where ρ(x,x′) is, for example, the reduced density matrix of the particle discussed before.
The phase-space nature of the Wigner transform suggests a strategy for exhibiting

classical behavior: Whenever W (x,p) represents a mixture of localized wave packets—
as in Equation (21)—it can be regarded as a classical probability distribution in the
phase space. However, when the underlying state is truly quantum, as is the superposi-
tion in Figure 2, the corresponding Wigner distribution function will have alternating
sign—see Figure 4(a). This property alone will make it impossible to regard the function
as a probability distribution in phase space. The Wigner function in Figure 4(a) is

(23)

where the Gaussians W+ and W – are Wigner transforms of the Gaussian wave packets
χ+ and χ–. If the underlying state had been a mixture of χ+ and χ– rather than a super-
position, the Wigner function  would have been described by the same two Gaussians
W+ and W –, but the oscillating term would have been absent.
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The equation of motion for W(x, p) of a particle coupled to an environment can be
obtained from Equation (17) for ρ(x, x′):

(24)

where V is the renormalized potential and D = 2mγ kBT = ηkBT. The three terms of this
equation correspond to the three terms of Equation (17).

The first term is easily identified as a classical Poisson bracket {H, W}. That is,
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Figure 4. Wigner
Distributions and Their
Decoherence for Coherent
Superpositions
(a) The Wigner distribution
W (x,p ) is plotted as a function
of x and p for the cat state of
Figure 2. Note the two separate
positive peaks as well as the
oscillating interference term 
in between them. This distribu-
tion cannot be regarded as a
classical probability distribu-
tion in phase space because it
has negative contributions.
(b–e) Decoherence produces
diffusion in the direction of the
momentum. As a result, the
negative and positive ripples
of the interference term in
W (x,p ) diffuse into each other
and cancel out. This process is
almost instantaneous for open
macroscopic systems. In the
appropriate limit, the Wigner
function has a classical 
structure in phase space and
evolves in accord with the
equations of classical dynam-
ics. (a′–e′) The analogous 
initial Wigner distribution and
its evolution for a superposi-
tion of momenta are shown.
The interference terms disap-
pear more slowly on a time
scale dictated by the dynamics
of the system: Decoherence is
caused by the environment
coupling to (that is, monitor-
ing) the position of the 
system—see Equation(16).
So, for a superposition of
momenta, it will start only after
different velocities move 
the two peaks into different
locations.
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if w(x, p) is a familiar classical probability density in phase space, then it evolves
according to:

(25)

where L stands for the Liouville operator. Thus, classical dynamics in its Liouville
form follows from quantum dynamics at least for the harmonic oscillator case,
which is described rigorously by Equations (17) and (24). (For more general V(x),
the Poisson bracket would have to be supplemented by quantum corrections of order
h.) The second term of Equation (24) represents friction. The last term results in the
diffusion of W(x, p) in momentum at the rate given by D. 
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Since 1991, understanding the emergence of preferred
pointer states during the process of decoherence has
advanced a great deal. Perhaps the most important
advance is the predictability sieve (Zurek 1993, Zurek
et al. 1993), a more general definition of pointer states
that applies even when the interaction with the envi-
ronment does not dominate over the self-Hamiltonian
of the system. The predictability sieve sifts through
the Hilbert space of a system interacting with its envi-
ronment and selects states that are most predictable.
Motivation for the predictability sieve comes from the
observation that classical states exist or evolve pre-
dictably. Therefore, selecting quantum states that
retain predictability in spite of the coupling to the
environment is the obvious strategy in search of clas-
sicality. To implement the predictability sieve, we
imagine a (continuously infinite) list of all the pure
states {|ψ〉} in the Hilbert space of the system in
question. Each of them would evolve, after a time t,
into a density matrix ρ|ψ〉(t). If the system were isolat-
ed, all the density matrices would have the form
ρ|ψ〉(t) = |ψ(t)〉〈ψ(t)| of projection operators, where
|ψ(t)〉 is the appropriate solution of the Schrödinger
equation. But when the system is coupled to the 
environment (that is, the system is “open”), ρ|ψ〉(t) 
is truly mixed and has a nonzero von Neumann
entropy. Thus, one can compute 
H(ρ|ψ〉(t)) = –Trρ|ψ〉(t) logρ|ψ〉(t), thereby defining a
functional on the Hilbert space H

S
of the system,

|ψ〉 → H(|ψ〉, t). 

An obvious way to look for predictable, effectively clas-
sical states is to seek a subset of all {|ψ〉} that minimize
H(|ψ〉, t) after a certain, sufficiently long time t. When
such preferred pointer states exist, are well defined (that
is, the minimum of the entropy H(|ψ〉,t) differs signifi-
cantly for pointer states from the average value), and are
reasonably stable (that is, after the initial decoherence

time, the set of preferred states is reasonably insensitive
to the precise value of t), one can consider them as good
candidates for the classical domain. Figure A illustrates
an implementation of the predictability sieve strategy
using a different, simpler measure of predictability—
purity (Trρ2)—rather than the von Neumann entropy,
which is much more difficult to compute. 

Figure A. The Predictability Sieve for the
Underdamped Harmonic Oscillator
One measure of predictability is the so-called purity
Trρ2, which is plotted as a function of time for mixtures
of minimum uncertainty wave packets in an under-
damped harmonic oscillator with γ/ω = 10–4. The wave
packets start with different squeeze parameters s. Trρ2

serves as a measure of the purity of the reduced den-
sity matrix ρ. The predictability sieve favors coherent
states (s = 1), which have the shape of a ground state,
that is, the same spread in position and momentum
when measured in units natural for the harmonic 
oscillator. Because they are the most predictable
(more than the energy eigenstates), they are expected
to play the crucial role of the pointer basis in the 
transition from quantum to classical.
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Classical mechanics “happens” in phase space. It is
therefore critically important to show that quantum 
theory can—in the presence of decoherence—reproduce
the basic structure of classical phase space and that it
can emulate classical dynamics. The argument put 
forward in my original paper (1991) has since been
amply supported by several related developments. 

The crucial idealization that plays a key role in classi-
cal physics is a “point.” Because of Heisenberg’s prin-
ciple, ∆x ∆p ≥ h/2, quantum theory does not admit
states with simultaneously vanishing ∆x and ∆p.
However, as the study of the predictability sieve has
demonstrated, in many situations relevant to the classi-
cal limit of quantum dynamics, one can expect decoher-
ence to select pointer states that are localized in both
∆x and ∆p, that is, approximate minimum uncertainty
wave packets. In effect, these wave packets are a quan-
tum version of points, which appear naturally in the
underdamped harmonic oscillator coupled weakly to the
environment (Zurek et al. 1993, Gallis 1996). These
results are also relevant to the transition from quantum
to classical in the context of field theory with the added
twist that the kinds of states selected will typically dif-
fer for bosonic and fermionic fields (Anglin and Zurek
1996) because bosons and fermions tend to couple dif-
ferently to their environments. Finally, under suitable
circumstances, einselection can even single out energy
eigenstates of the self-Hamiltonian of the system, thus
justifying in part the perception of “quantum jumps”
(Paz and Zurek 1999).

An intriguing arena for the discussion of quantum-clas-
sical correspondence is quantum chaos. To begin with,
classical and quantum evolutions from the same initial
conditions of a system lead to very different phase-
space “portraits.” The quantum phase-space portrait 
will depend on the particular representation used, but
there are good reasons to favor the Wigner distribution.
Studies that use the Wigner distribution indicate that,
at the moment when quantum-classical correspondence
is lost in chaotic dynamics, even the averages computed
using properties of the classical and quantum states
begin to differ (Karkuszewski et al. 2002).

Decoherence appears to be very effective in restoring
correspondence. This point, originally demonstrated
almost a decade ago (Zurek and Paz 1994, 1995) has
since been amply corroborated by numerical evidence
(Habib et al. 1998). Basically, decoherence eradicates
the small-scale interference accompanying the rapid
development of large-scale coherence in quantum ver-

sions of classically chaotic systems (refer to Figure A).
This outcome was expected. In order for the quantum to
classical correspondence to hold, the coherence length
lC of the quantum state must satisfy the following
inequality: lC = h/(2Dλ)1/2 << χ, where λ is the
Lyapunov exponent, D is the usual coefficient describ-
ing the rate of decoherence, and χ is the scale on which
the potential V(x) is significantly nonlinear:

When a quantum state is localized on scales small com-
pared to χ (which is the import of the inequality above),
its phase space evolution is effectively classical, but
because of chaos and decoherence, it becomes irre-
versible and unpredictable. Nevertheless—as argued by
Tanmoy Bhattacharya, Salman Habib, and Kurt Jacobs
in the article “The Emergence of Classical Dynamics in
a Quantum World” on page 110—one can even recover
more or less classical trajectories by modeling a contin-
uous measurement. However, this is an extra ingredient
not in the spirit of the decoherence approach as it
invokes the measurement process without explaining it. 

A surprising corollary of this line of argument is the
realization (Zurek and Paz 1994) that the dynamical 
second law—entropy production at the scale set by the
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This numerical study (Habib et al. 1998) of a chaotic 
driven double-well system described by the Hamiltonian
H = p2/2m – Ax2 + Bx4+ Fx cos(ωt) with m = 1, A = 10, B = 0.5,
F = 10, and ω = 6.07 illustrates the effectiveness of decoher-
ence in the transition from quantum to classical. These
parameters result in a chaotic classical system with a
Lyapunov exponent λ ≅ 0.5. The three snapshots taken after
8 periods of the driving force illustrate phase space distribu-
tions in (a) the quantum case, (b) the classical case, and 
(c) the quantum case but with decoherence (D = 0.025).
The initial condition was always the same Gaussian, and in
the quantum cases, the state was pure. Interference fringes

are clearly visible in (a), which bears only a vague resem-
blance to the classical distribution in (b). By contrast,
(c) shows that even modest decoherence helps restore 
the quantum-classical correspondence. In this example the
coherence length llC is not much smaller than the typical 
nonlinearity scale, so the system is on the border between
quantum and classical. Indeed, traces of quantum interference
are still visible in (c) as blue “troughs,” or regions where the
Wigner function is still slightly negative. The change in color
from red to blue shown in the legends for (a) and (c) corre-
sponds to a change from positive peaks to negative troughs.
In the ab initio classical case (b), there are no negative troughs.
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dynamics of the system and more or less independent of
the strength of the coupling to the environment—is a
natural and, indeed, an inevitable consequence of deco-
herence. This point has been since confirmed in numeri-
cal studies (Miller and Sarkar 1999, Pattanayak 1999,
Monteoliva and Paz 2000).

Other surprising consequences of the study of Wigner
functions in the quantum-chaotic context is the realiza-
tion that they develop phase space structure on the scale
associated with the sub-Planck action a = h2/A << h,
where A is the classical action of the system, and that this
sub-Planck action is physically significant (Zurek 2001b).
This can be seen in Figure A part (a), where a small black
square with the area of h is clearly larger than the small-
est “ripples” in the image.

This point was to some extent anticipated by the plots of
the Wigner functions of Schrödinger cats [see
Figures 4(a) and 4(a′) in this article] a version of which
appeared in the 1991 Physics Today version of this
paper—the interference term of the Wigner function has
a sub-Planck structure. 

A lot has happened in establishing phase-space aspects
of quantum-classical correspondence, but a lot more
remains to be done. (A more thorough summary of the
past accomplishments and remaining goals can be found
in Zurek 2001b).

(b) (c)

Figure A. Decoherence in a Chaotic Driven Double-Well System



Classical equations of motion are a necessary but insufficient ingredient of the classical
limit: We must also obtain the correct structure of the classical phase space by barring all but
the probability distributions of well-localized wave packets. The last term in Equation (24)
has precisely this effect on nonclassical W(x,p). For example, the Wigner function for the
superposition of spatially localized wave packets—Figure 4(a)—has a sinusoidal modulation
in the momentum coordinate produced by the oscillating term cos((∆x/h)p). This term, how-
ever, is an eigenfunction of the diffusion operator ∂2/∂p2 in the last term of Equation (24).
As a result, the modulation is washed out by diffusion at a rate 

(26)

Negative valleys of W(x,p) fill in on a time scale of order τD, and the distribution
retains just two peaks, which now correspond to two classical alternatives—see Figures 4(a)
to 4(e). The Wigner function for a superposition of momenta, shown in Figure 4(a′), also
decoheres as the dynamics causes the resulting difference in velocities to damp out the
oscillations in position and again yield two classical alternatives—see Figures 4(b′) to 4(e′). 

The ratio of the decoherence and relaxation time scales depends on h2/m—see
Equation (19). Therefore, when m is large and h small, τD can be nearly zero—decoher-
ence can be nearly instantaneous—while, at the same time, the motion of small patches
(which correspond to the probability distribution in classical phase space) in the smooth
potential becomes reversible. This idealization is responsible for our confidence in classi-
cal mechanics, and, more generally, for many aspects of our belief in classical reality.

The discussion above demonstrates that decoherence and the transition from quantum
to classical (usually regarded as esoteric) is an inevitable consequence of the immersion of
a system in an environment. True, our considerations were based on a fairly specific
model—a particle in a heat bath of harmonic oscillators. However, this is often a reason-
able approximate model for many more complicated systems. Moreover, our key conclu-
sions—such as the relation between the decoherence and relaxation time scales in
Equation (19)—do not depend on any specific features of the model. Thus, one can hope
that the viscosity and the resulting relaxation always imply decoherence and that the tran-
sition from quantum to classical can be always expected to take place on a time scale of
the order of the above estimates.

Quantum Theory of Classical Reality

Classical reality can be defined purely in terms of classical states obeying classical laws.
In the past few sections, we have seen how this reality emerges from the substrate of quan-
tum physics: Open quantum systems are forced into states described by localized wave
packets. They obey classical equations of motion, although with damping terms and fluctu-
ations that have a quantum origin. What else is there to explain?

Controversies regarding the interpretation of quantum physics originate in the clash
between the predictions of the Schrödinger equation and our perceptions. I will therefore
conclude this paper by revisiting the source of the problem—our awareness of definite out-
comes. If these mental processes were essentially unphysical, there would be no hope of
formulating and addressing the ultimate question—why do we perceive just one of the
quantum alternatives?—within the context of physics. Indeed, one might be tempted to 
follow Eugene Wigner (1961) and give consciousness the last word in collapsing the state
vector. I shall assume the opposite. That is, I shall examine the idea that the higher mental
processes all correspond to well-defined, but at present, poorly understood information-
processing functions that are being carried out by physical systems, our brains.
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Described in this manner, awareness becomes susceptible to physical analysis. In partic-
ular, the process of decoherence we have described above is bound to affect the states of the
brain: Relevant observables of individual neurons, including chemical concentrations and
electrical potentials, are macroscopic. They obey classical, dissipative equations of motion.
Thus, any quantum superposition of the states of neurons will be destroyed far too quickly
for us to become conscious of the quantum “goings on.” Decoherence, or more to the point,
environment-induced superselection, applies to our own “state of mind.”

One might still ask why the preferred basis of neurons becomes correlated with the clas-
sical observables in the familiar universe. It would be, after all, so much easier to believe in
quantum physics if we could train our senses to perceive nonclassical superpositions. One
obvious reason is that the selection of the available interaction Hamiltonians is limited and
constrains the choice of detectable observables. There is, however, another reason for this
focus on the classical that must have played a decisive role: Our senses did not evolve for
the purpose of verifying quantum mechanics. Rather, they have developed in the process in
which survival of the fittest played a central role. There is no evolutionary reason for per-
ception when nothing can be gained from prediction. And, as the predictability sieve illus-
trates, only quantum states that are robust in spite of decoherence, and hence, effectively
classical, have predictable consequences. Indeed, classical reality can be regarded as nearly
synonymous with predictability. 

There is little doubt that the process of decoherence sketched in this paper is an impor-
tant element of the big picture central to understanding the transition from quantum to clas-
sical. Decoherence destroys superpositions. The environment induces, in effect, a superse-
lection rule that prevents certain superpositions from being observed. Only states that sur-
vive this process can become classical.

There is even less doubt that this rough outline will be further extended. Much work
needs to be done both on technical issues (such as studying more realistic models that could
lead to additional experiments) and on problems that require new conceptual input (such as
defining what constitutes a “system” or answering the question of how an observer fits into
the big picture).

Decoherence is of use within the framework of either of the two interpretations: It can
supply a definition of the branches in Everett’s Many Worlds Interpretation, but it can also
delineate the border that is so central to Bohr’s point of view. And if there is one lesson to
be learned from what we already know about such matters, it is that information and its
transfer play a key role in the quantum universe. 

The natural sciences were built on a tacit assumption: Information about the universe can
be acquired without changing its state. The ideal of “hard science” was to be objective and
provide a description of reality. Information was regarded as unphysical, ethereal, a mere
record of the tangible, material universe, an inconsequential reflection, existing beyond and
essentially decoupled from the domain governed by the laws of physics. This view is no
longer tenable (Landauer 1991). Quantum theory has put an end to this Laplacean dream
about a mechanical universe. Observers of quantum phenomena can no longer be just pas-
sive spectators. Quantum laws make it impossible to gain information without changing the
state of the measured object. The dividing line between what is and what is known to be has
been blurred forever. While abolishing this boundary, quantum theory has simultaneously
deprived the “conscious observer” of a monopoly on acquiring and storing information: Any
correlation is a registration, any quantum state is a record of some other quantum state.
When correlations are robust enough, or the record is sufficiently indelible, familiar classical
“objective reality” emerges from the quantum substrate. Moreover, even a minute interaction
with the environment, practically inevitable for any macroscopic object, will establish such a
correlation: The environment will, in effect, measure the state of the object, and this suffices
to destroy quantum coherence. The resulting decoherence plays, therefore, a vital role in
facilitating the transition from quantum to classical. 
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The quantum theory of classical reality has developed sig-
nificantly since 1991. These advances are now collectively
known as the existential interpretation (Zurek 2001a). The
basic difference between quantum and classical states is
that the objective existence of the latter can be taken for
granted. That is, a system’s classical state can be simply
“found out” by an observer originally ignorant of any of
its characteristics. By contrast, quantum states are hope-
lessly “malleable”—it is impossible in principle for an
observer to find out an unknown quantum state without
perturbing it. The only exception to this rule occurs when
an observer knows beforehand that the unknown state is
one of the eigenstates of some definite observable. Then
and only then can a nondemolition measurement
(Caves et al. 1980) of that observable be
devised such that another observer who
knew the original state would not notice
any perturbations when making a 
confirmatory measurement.

If the unknown state cannot be found
out—as is indeed the case for isolated
quantum systems—then one can make a
persuasive case that such states are sub-
jective, and that quantum state vectors are
merely records of the observer’s knowledge
about the state of a fragment of the Universe
(Fuchs and Peres 2000). However, einselection is
capable of converting such malleable and “unreal”
quantum states into solid elements of reality. Several ways to
argue this point have been developed since the early discus-
sions (Zurek 1993, 1998, 2001a). In effect, all of them rely
on einselection, the emergence of the preferred set of pointer
states. Thus, observers aware of the structure of the
Hamiltonians (which are “objective,” can be found out with-
out “collateral damage”, and in the real world, are known
well enough in advance) can also divine the sets of preferred
pointer states (if they exist) and thus discover the preexisting
state of the system.

One way to understand this environment-induced objective
existence is to recognize that observers—especially human
observers—never measure anything directly. Instead, most
of our data about the Universe is acquired when information
about the systems of interest is intercepted and spread
throughout the environment. The environment preferentially
records the information about the pointer states, and hence,
only information about the pointer states is readily available.
This argument can be made more rigorous in simple mod-
els, whose redundancy can be more carefully quantified
(Zurek 2000, 2001a).

This is an area of ongoing research. Acquisition of informa-
tion about the systems from fragments of the environment
leads to the so-called conditional quantum dynamics, a 
subject related to quantum trajectories (Carmichael 1993). 

In particular one can show that the predictability sieve also
works in this setting (Dalvit et al. 2001).

The overarching open question of the interpretation of quan-
tum physics—the “meaning of the wave function”—appears
to be in part answered by these recent developments. 
Two alternatives are usually listed as the only conceivable
answers. The possibility that the state vector is purely epis-
temological (that is, solely a record of the observer’s knowl-
edge) is often associated with the Copenhagen Interpretation
(Bohr 1928). The trouble with this view is that there is no
unified description of the Universe as a whole: The classical
domain of the Universe is a necessary prerequisite, so both

classical and quantum theory are necessary and 
the border between them is, at best, ill-defined.

The alternative is to regard the state vector
as an ontological entity—as a solid

description of the state of the Universe
akin to the classical states. But in this
case (favored by the supporters of
Everett’s Many Worlds Interpretation),
everything consistent with the universal
state vector needs to be regarded as

equally “real.”

The view that seems to be emerging from
the theory of decoherence is in some sense

somewhere in between these two extremes.
Quantum state vectors can be real, but only when the

superposition principle—a cornerstone of quantum behav-
ior—is “turned off” by einselection. Yet einselection is
caused by the transfer of information about selected 
observables. Hence, the ontological features of the state 
vectors—objective existence of the einselected states—is
acquired through the epistemological “information transfer.”

Obviously, more remains to be done. Equally obviously,
however, decoherence and einselection are here to stay. They
constrain the possible solutions after the quantum–classical
transition in a manner suggestive of a still more radical view
of the ultimate interpretation of quantum theory in which
information seems destined to play a central role. Further
speculative discussion of this point is beyond the scope of
the present paper, but it will be certainly brought to the fore
by (paradoxically) perhaps the most promising applications
of quantum physics to information processing. Indeed,
quantum computing inevitably poses questions that probe
the very core of the distinction between quantum and classi-
cal. This development is an example of the unpredictability
and serendipity of the process of scientific discovery:
Questions originally asked for the most impractical of 
reasons—questions about the EPR paradox, the quantum-
to-classical transition, the role of information, and the 
interpretation of the quantum state vector—have become 
relevant to practical applications such as quantum 
cryptography and quantum computation. �
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